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Motivation

Current Grid
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Motivation
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Major Adoption of Renewables -20-30%-

Distributed Generation and Elastic Demands -Real-Time Pricing-

Distributed Decision-Making — Most Players use Optimization
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Dynamic Forcings -Weather- Drive Markets




Motivation

Dynamic Forcings — Supply (Wind) and Elastic Demands Vary at Higher Frequencies
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Capturing Dynamic Effects is Becoming Critical

Longer Forecast Horizons and Faster Updates Needed



1. Economic Dispatch



Deterministic Economic DisEatch

- Real-Time Balancing of Demand-Supply, Sets LM Prices - Updated Every S Minutes
- Large-Scale LP/QP - O(104-10%) - Horizon, Ramps, Transmission Constraints

Forecast Horizon
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Benchmark System (Illinois): -1900 Buses, 2538 Lines, 870 Loads, and 261 Generators
-Daily Generation Cost ~ $O(10%)



Deterministic Economic DisEatch

Effect of Foresight on Economics - Current Practice 15 Minutes
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Potential of $O(108)/Yr — Increases with Wind and Demand Variability
Costs Constrained by Solution Time -5 Minutes-




Deterministic Economic DisEatch

Computational Performance — Linear Algebra and Warm-Starts
IPOPT- Symmetric KKT Matrix (MA57) vS. CPLEX-Simplex — Unsymmetric Basis Matrix
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Basis is “Robust”

IPOPT Constructs Basis for Simplex -In Advance, With Forecast Load-

Largest Problem in 5 Minutes - 20 Hr Foresight, 240 Steps, 5 Min/Step, 1x10° Variables




Stochastic Economic Dispatch

Uncertainty Currently Handled Through Reserves — Conservative and Expensive
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15t Stage Lagrange Multipliers for Network are Implemented Prices




Stochastic Economic Dispatch rerra & 4nitescu

Decompose at Linear Algebra Level — Key for Scalability

-Preserve Convergence Properties (Avoid Lagrangean Relaxation & Benders)
-PIPS Solver: QP/LP Barrier, Schur-Based, Dynamic Load Balancing, MPI

* Dispatch with 150 Generators and 6000 Scenarios,
No Network, O(107) Variables. 600 Times Faster

Than Serial on 1,000 cores

* Scaling Bottlenecks in 1t Stage Dense Schur
Complement Avoided with Stochastic
Preconditioner

* Strong Scaling on 2,000 cores with O(10%)
Variables and O(10°) First-Stage Variables — with
ScaLAPACK

* Further Questions:
- Is Probability Distribution Correct?

- What if Scenario Generation is Expensive?
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Uncertaintz Quantification — Weather Constantinescu

Major Advances in Meteorological Models (WRF)
Highly Detailed Phenomena
High Complexity 4-D Fields (10%- 108 State Variables)

Model Reconciled to Measurements From Meteo Stations

Data Assimilation -Every 6-12 hours-:
3-D Var Courtier, et.al. 1998
4-D Var Navon et.al., 2007
Extended and Ensemble Kalman Filter Eversen, et.al. 1998

http://www.meteomedia.com/

http://www.emc.ncep.noaa.gov/gmb/ens/

Is WRF Computationally Practical Enough for Dispatch?




Uncertainty Quantification
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Weather, Loads, and Generation Exhibit Complex Spatio-Temporal Correlations

-Correlations Must Be Captured in Forecasting (Not in Practice)-




Uncertaintz Quantification
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Forming Exact Covariance Matrix is Impractical:
1) Create Empirical Distribution using Only Most Relevant States

2) Propagate Samples through WRF Model ID Size Grid
#1 | 130 x 60 | 32km?

Making WRF Computationally Feasible: #2 | 126 x 121 | 6km?
#3 | 202 x 232 | 2km?

Grid-Targeted Resolutions and Computational Resources
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Uncertaintx Quantification

Validation Results (Illinois, 2006) with NOAA Data 23]
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Resampling Strategies

Integration Uncertainty Quantification & Stochastic UC
- WRF Forecast Probability Distribution is NOT in Closed-Form
- Generating Each Scenario is Expensive (50-100 Practical)

How to Generate More Realizations? Inference Analysis with Resampling

1) Sample Weights on Hyperplane %wsl =1 and Compute p.7%"" = w, - plind
S s€S
2) Solve Stochastic Problem with )/ Batches of Realizations -

M
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Stochastic Optimization - UQ

Uncertainty Quantification
WRF
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WRF Resolution and Number of Scenarios Must be Adapted in Real-Time
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Stochastic Optimization - UQ
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Stochastic Optimization - UQ

Aggregated Power Profiles -Validation with Real Wind Speed Data-
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- WRF Forecasts are -In General- Accurate with Tight Uncertainty Bounds

- Inference Analysis Reveals that 30 WRF Samples are Sufficient
Cost ~ $474,000, Upper Bound o? (1,082 $?), Lower Bound o2 (1,656 $?)

- Excursions Do Occur: Probability Distribution of 374 Day is Inaccurate!

H

igher Frequency Data Assimilation (1 hour)? Missing Physics? 100m Sensors?

Stochastic Optimization Benefits are Limited without UQ




3. Building Energy Management



Building Energx Management

Manager: Minimizes Energy Costs in Real-Time
Updates Set-Points Every 5-10 Minutes
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Energy Demands and Costs Driven by Weather, Occupancy, and Pricing Structures
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Building Energx Management

Effect of Foresight on Energy Costs
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Manager Implicitly Forecasts Demand — Key for Real-Time Pricing & Demand-Response




Building Enerey Management

Collaborative Project: Argonne-Building I1Q
“Proactive Energy Management for Building Systems”

Mike Zimmermann, Tom Celinski, Peter Dickinson (BIQ), and Victor M. Zavala (ANL)




Building Energx Management

Machine Learning

Inputs Outputs
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. | |
Zone temp settings &! :l:> Pre-Cooling Schedule

tenant feedback:

»

Ambient temperature :»
1

Energy costs :»

* Solves Nonlinear Optimal Control Problem with Machine Learning Model
Solved Every 10 Minutes, Forecast of 1-2 Hours
Building Model Re-Trained Daily

Machine Learning Alternative for Large-Scale and Cheap Deployment

|
:E> Optimal Temperature

* Key Trade-Off: Human Comfort vs. Energy Cost vs. CO, emissions

* Computational Challenges: Increase Building Spatio-Temporal Resolution

Large-Scale and NonConvex Machine Learning
Physics-Based Models? -Michael Wetter-
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Currently Being Implemented at Argonne’s TCS Building — Deployment 12/2010

Expected Yearly Savings of 15-30% on HVAC Energy — $0O(103-109)



4. Dynamic Games and Bidding



Dvyvnamic Games and Biddin
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- GENCOs and Utilities Bid in Day-Ahead and Real-Time Markets -5 Minutes-

- ISO Clears Markets To Maximize Social Welfare under Transmission Constraints
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Key: Generator States Propagated in Time — Ramps and Foresight Affect Market Stability




Dxnamic Games and Bidding

Supply Function-Based Dynamic Game Models kannan & Zavala, 2010
Large, NonConvex Nash and Stackelberg
“Simple” Model: Simultaneous Bidding & Market Clearing, No Transmission, Periodic Load
Price
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Dvyvnamic Games and Biddin

Identifying Non-Gaming Behavior
Some Players -Intentionally or Unintentionally- Bid Suboptimally
Introduces Noise in Equilibrium — Can be Inferred from Data
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Huge Potential for Dynamic Market Models — Realistic, Price Forecasting
- Fundamental (Existence, Uniqueness, Stability) and Computational Questions




5. Conclusions and Research Challenges



Unit Commitment and Transmission Switching

Day-Ahead Market Clearing, Which Units and Lines Should be Turned ON/OFF?
ED 0O(10°-10%) Continuous + UC - O(10°%) Integers + Switching - O(104) Integers
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Further Extensions: Stochastic, Complementarity, AC Power Flow



Conclusions and Research Challenges

Next-Generation Grid
- Higher Frequency Forcings — Dynamic Models, Solution Time, Foresight

Many Advances in Stochastic Optimization But Not On Uncertainty Quantification
- Low Cost Weather Forecasts for ISOs, GENCOs, RTOs, Buildings?

WREF -Resolution Constrained by Computational Resources

Machine Learning (Gaussian Process Modeling) - Increase Data Sets

- Limited Uncertainty Information?

High-Performance Computing and Scalable Algorithms
- Expand Domains -Interconnects-, Networks, Linear Algebra + MILP/MINLP
- Lineal Algebra in Simplex, Structure-Preserving Branch & Cut

- Distributed Optimization -Limited Information Exchange-
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